Oriented electron transmission in polyoxometalate-metalloporphyrin organic framework for highly selective electroreduction of CO2
نویسندگان
چکیده
منابع مشابه
CO2-Selective Nanoporous Metal-Organic Framework Microcantilevers
Nanoporous anodic aluminum oxide (AAO) microcantilevers are fabricated and MIL-53 (Al) metal-organic framework (MOF) layers are directly synthesized on each cantilever surface by using the aluminum oxide as the metal ion source. Exposure of the MIL53-AAO cantilevers to various concentrations of CO2, N2, CO, and Ar induces changes in their deflections and resonance frequencies. The results of th...
متن کاملA new tetrazolate zeolite-like framework for highly selective CO2/CH4 and CO2/N2 separation.
A new tetrazolate zeolite-like framework with a diamond topology, UTSA-49, was synthesized. UTSA-49 shows high selectivity for CO2/CH4 and CO2/N2 indicating a synergistic effect of the suitable pore size/shape and functional groups.
متن کاملCopper Nanocrystals Encapsulated in Zr-based Metal-Organic Frameworks for Highly Selective CO2 Hydrogenation to Methanol.
We show that the activity and selectivity of Cu catalyst can be promoted by a Zr-based metal-organic framework (MOF), Zr6O4(OH)4(BDC)6 (BDC = 1,4-benzenedicarboxylate), UiO-66, to have a strong interaction with Zr oxide [Zr6O4(OH)4(-CO2)12] secondary building units (SBUs) of the MOF for CO2 hydrogenation to methanol. These interesting features are achieved by a catalyst composed of 18 nm single...
متن کاملCopper nanoparticle ensembles for selective electroreduction of CO2 to C2-C3 products.
Direct conversion of carbon dioxide to multicarbon products remains as a grand challenge in electrochemical CO2 reduction. Various forms of oxidized copper have been demonstrated as electrocatalysts that still require large overpotentials. Here, we show that an ensemble of Cu nanoparticles (NPs) enables selective formation of C2-C3 products at low overpotentials. Densely packed Cu NP ensembles ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature Communications
سال: 2018
ISSN: 2041-1723
DOI: 10.1038/s41467-018-06938-z